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Abstract:

We review converging lines of evidence describing the negative relationship found between the signaled
probability of food and regpse variation. This relationship is quite geneial:abserved in both

temporal and spatial behavioral dimensions, in both rats and pigeons, and in both the operant chamber
and in opedield settings. Response variation is also greater under conditions involving smaller or delayed
food rewards compared to kargr immediate rewards. These data support davewf Expewathich

states that outcome expectation is a determinant of response variation, with variation increasing or
decreasing with a decrease or increase in outcome expectation, regpectvebason, ve present
simulations of Modified Law of Effegtt e ndi ng t he expl anat dawWhieower o
this Modified Law of Effiast improved explanatory power, it fails to account for all of the empirical data.
The Law of Expealso fails to account for all of the empirical phenomena. Thud,dvatfre necessary.
Investigations into the neural basis of these laws may lead to new insights into the generation and
regulation of creative behavior and to a better understandingnetithksystems involved in learned
behavior.
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Resumen

Se revisan lineas convergentes de evidencia y describimos la relacién negativa encontrada entre |a
probabilidad sefizada de alimento y la variabilidad de respuesta. Esta relacién es bastante general: se
observa en las dimensiones temporal y espacial del comportamiento, tanto en ratas como palomas, y tanto
en la cAmara operante como en situaciones de campo abientiabiladad de la respuesta también es

mayor en condiciones que implican recompensas de comida mas pequefias o demoradas, comparadas col
recompensas mas grandes o mas inmediatas. Estos datos apoyan una nueva Ley de Expectativa que
establece que la expactatle resultados es un determinante de la variabilidad de la respuesta, creciendo o
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decreciendo en relacion a una disminuciéon o un aumento en la expectativa de resultados, respectivamente.
Presentamos simulaciones de una Ley del Efecto Modificadaetaie eXtpoder explicativo de la Ley

original de Thorndike. Aunque que esta Ley del Efecto Modificada posee mayor poder explicativo, no da
cuenta de todos los datos empiricos. La Ley de Expectativa tampoco explica todos los fendémenos
empiricos. Por esta 6z ambas leyes son necesarias. La investigacion sobre las bases neurales de estas
leyes puede conducir a nuevas ideas sobre la generacion y regulacién de la conducta creativa y a una mejc
comprension de los sistemas neurales implicados en el comportgreadido.

Palabras clavieey del Efecto, Ley de la Expectativa, Variacion, Variabilidad, Expectativa, Aprendizaje

Variation is fundamental to Darwinds theory c
process of selection operates on tistsate of heritable phenotypic variation to shape the evolution of
traits. As powerful as it is, there are limits to the scope of evolutionary processes. Most notably, evolution
does not act on the individual, but only on populations of individualsthEhiggces of natural selection

do not continue to shape an individual ds phenoty
Skinner famously wrote, OWhere inherited beh
process of conditioning takes overdéd (Skinner, 109

through learning processes are not limited to alfétealioral phenotype. The analogy between natural
selection and learning through reinforcement suggests that processes of variation and selection that are
prevalent in evolutionary analyses should be equally prevalent in analyses of learned bebavior. Inde
selection has been of central importance in learning theory. Processes of behavioral variation, however,
have received much less attention (Epstein, 1991; Roberts, 2014). This is surprising given the large
amount of work on phenotypic variation in etfohary biology, with a range of mechanisms including
genetic mutation and polymorphisms, genetic recombination during sexual reproduction, epigenetics and
developmental processes, and other environmental regulatory factors. A comparable set of byechanisms
which behavioral variation is modified have not yet become of central interest in learning theory. Instead,
it is often assumed that selection acts on a preexisting amount of behavioral variation without explicitly
noting where this variation comesnfronor how it contributes to the shaping of learned behavior.
Epsteinds ingenious generativity theory has bee
behavioral variability (see Epstein, 2014, for a cogent account of the theory). Tgreldesya formal

account for how novel behavior emerges predictably from conditions in which behavior is ineffective or
the conditions themselves are novel. Nevertheless, it is agnostic with respect to (or perhaps eschews
accounts in terms of) psycholagimechanisms that regulate behavioral variation.

In the past, others and we have made the claim that expectation of the outcome plays a central
mechanistic role in the modulation of behavioral variation. In this article, we provide an overview of our
resarch on this topic. We then discuss whether outcome expectation is a necessary theoretical construct
to explain these results.

Empirical studies

An early clue to the role of expectation in driving behavioral variation comes from the study of
extinction oflearned behavior. Historically, researchers reported that behavioral variation increases
markedly during extinction of operant behavior. When a previously reinforced response (e.g., lever
pressing) is no longer followed by reward, the action does ngtleeoshe less frequent; behavior also
tends to become more variable in nature. This relationship has been well documented (Antonitis, 1951;
Balsam, Deich, Ohyama, & Stokes, 1998; Eckerman & Lanson, 1969; Frick & Miller, 1951; Herrick &
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Bromberger, 1965; Minson & Hurwitz, 1961; Neuringer, Kornell, & Olufs, 2001; Notterman, 1959;
Stebbins & Lanson, 1962).

Guilhardi & Church (2006)
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Figure 1. Standard deviations of prepoke times as a function of peck order and experimental phase. Data from
Guilhardi and Church (2006). The legeedtifying the various lines is in two parts: half in the upper panel, half in

the lower panel. Each point is a mean over 24 rats. Reprinted from Stahlman, Roberts, and Blaisdell (2010a) with
permission
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Figure 2. The distribution of prepokitmes as a function of training condition. Data from Guilhardi and Church
(2006). Each point is a mean over 24 rats, threeirfigechl values, and two experiments. Reprinted from
Stahlman, Roberts, and Blaisdell (2010a) with permission.
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We confirmedhHis in a reanalysis of the raw nosepoke data from a study by Guilhardi and Church
(2006) reporting the extinction of operant behavior in the rat (Stahlman, Roberts, & Blaisdell, 2010a).
Figure 1 shows that standard deviations of time to first poke apdkiatmterval (prepoke times) for
subsequent pokes increased during extinction after initial training on varinterfeeédF1) schedules
of food reinforcement. Importantly, Figure 2 shows that the distribution of prepoke times was not shifted,
as pedicted by a change in mean response rate, but broadened during extinction. Thus, during extinction
when expectation of a food reward diminishes, variation in the timing of the prenwdasted
responses increased

An interpretation of this relatiomghn terms of outcome expectation is, however, problematic.
Many factors differ between training and extinction, however, confounding an interpretation purely in
terms of outcome expectation. Extinction differs inassociative factors. The densityewfard is lower
during extinction than during acquisition. Response rates tend to be lower (after the extinction burst has
subsided) during extinction as well. Associative factors also differ between extinction and established
behavior late in acquisitidbne of them is expectation of reward, which is lower during extinction than
after acquisition. Context conditioning can also differ, being lower during extinction when the association
between the context and the outcome is also undergoing extinctioronfex¢ may become a
modulator of extinction learning, as is demonstrated in studies of renewal (Bouton & King, 1983).

Gharib, Gade & Robherts (2004)
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Figure 3. Preresponse time as a function of response order. Both axes are logarithmic. Data from Gharib, Gade,
and Roberts (2004), Exjpeent 2, 100%/25% phase. First = data from the first bar presses during a trial. Later =

data from all later bar presses. Each point is a mean over 11 rats. Reprinted from Stahlman, Roberts, and Blaisdell
(2010a) with permission.

These problems necedsitthe adoption of a method other than extinction that avoids these
confounding factors if one is to establish a causal link between outcome expectation and behavior
variation. Gharib, Gade, and Roberts (2004) developed assteadperant procedure hwivhich to
cleanly study the role of outcome expectation in behavior variation. Rats were trained to press a bar for a
food reward. There were two instrumental cues (discriminative stimuli) used in each session, with 50% of
the trials presenting a hifffod cue and the remaining trials presenting-fotmvcue. On trials with the
highfood cue, lever pressing was rewarded on every trial. Lever pressing was only reinforced on 25% of
trials with the lovwiood cue. Figure 3 shows results from this experifleatcue signaling a lower
reward probability produced higher variation in-fevee s s t i me s . I n Gharib et
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randomly mixed. Thus, most factors were equated for the two types of trials, including overall density of
food in each ssion, time since most recent food, overall session response rate, time since most recent
response, and context conditioning. This leaves reward expectancy signaled by each cue due to their
respective histories of reinforcement as the most likely faetamidimg variation in lever press times.

These data suggest a gemenal of Expect
Expectation of reward modulates response variation such that they have a negative relationst

As expectation increases, variation decreaseghis reflects exploitation of a known resource.
As expectation decreases, variation increaseghis reflects exploration for other resources when the
known reward is expected to be of low probability. Humans and pigeons have been shown to be sensitive
to probabilities of signaled reward as a modulator of the exploration and exploitation decisions (Racey et
al., 2011), thus, it is not surprising to find this in rats, too. Bolles (1972) went so far as to propose that
psychological processes based on erpgatauld completely replace those basedPomebit as an
explanation for the fundamental principles of reinforcement that has received so much attention in the
behaviomanalytic tradition of Thorndike and Skinner. For example, based on a substamtivefamo
research on expectancies beginning with the work of Tolman (1932), Bolles suggested that three
postulates concerning expectancy could provide a complete account of reinforcement learning: a) the
strength of the -® expectancy (i.e., the Pavloviaogaation), b) the strength of th€ORexpectancy
(which underlies gedirected behavior), and c) the value of S (i.e., incentive motivation). For a more
recent review of these topics, see Blaisdell (2008).
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Figure 4. Peck location as a function of probability of reward of operant screen pecks. The left panels show
horizontal position, the right panels, vertical position, both measured from the l|dvead lefirner of the
touchscreen. Each dotted line is from a difitebird. The solid line shows the mean over birds. The two numbers

in the upper right of each graph are p values frortaidee t tests of the hypothesis that the values are increasing
(first number) or decreasing (second number). Reprinted from StdRbharts, and Blaisdell (2010a) with
permission.

If this relationship is general, then evidence should be found in a wide range of learning
situations, test settings, response types, and species. We tested the generality of this rule in several ways: i
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different species (pigeons and rats), in different dimensions of behavior (temporal and spatial), and in
different types of experimental settings (operant chamber and open field).

First, we investigated the rule in operant screen pecking in pigeomsar{Stardl., 2010a).
Pigeons were presented with six types of trials in each session. On each trial, a discriminative stimulus (a
colored circle) was presented on the center of the screen. The pigeon had to completeaticandom
(RR) 5 requirement of péof to the cue to end the trial. Upon the termination of a trial, the cue
disappeared from the screen and the intertrial interval (ITI) began. There were 6 cues, each associated
with a different probability of reward (2.8 s access to mixed grain fropeabwpw the touchscreen)
ranging from 100% to 0.6%. If reward was scheduled, it was delivered immediately upon the termination

of a trial.
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Figure 5. Prepeck times as a function of probability of reward of operant screen pecking. First peckstare the fi
pecks during a trial; later pecks are all later pecks during that trial. The two numbers in the upper right of each graph
are p values from otailed t tests of the hypothesis that the values are increasing (first number) or decreasing
(second numberfach dotted line is from a different bird. The solid line shows the mean over birds. Reprinted
from Stahlman, Roberts, and Blaisdell (2010a) with permission.

We were interested in the effects of reward probability signaled by the cue on variation in two
dimensions of the behavior: temporal and spatial. To assess temporal variation, we measured log
interresponse times (IRT) between pecks. To assess spatial variation, we measured standard deviation of
peck locations on the screen. Using this procedunaye/@bserved that response variation in the spatial
(Figure 4, bottom panels) and temporal (Figure 5, bottom panels) dimensions increases as a decreasing
function of probability of reward signaled by the cue. This relationship held for both pecKilegation
spatial domain) and the interpeck interval (temporal domain). As with the results from rats (Gharib et al.,
2004), variability was uncorrelated with mean location or interresponse times (IRTs; top panels of Figures
4 and 5), suggesting that the aspects of behavior are the result of independent processes.

Our results from the pigeon operant pecking procedure appear to support the general principle of
the Law of Expedhe greater the expectation of an appetitive reinforcer, the less varabditipe
present in the response. This was true for both temporal and spatial dimensions of behavior. But would
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this same rule apply to a Pavlovian contingency in which delivery of the reward is not depleadent on
subjedd sesponse? We conducted an shaping procedure (Brown & Jenkins, 1968; Williams &
Williams, 1969) similar to the operant procedure described above (Stahlman, Young, & Blaisdell, 2010b).
As in the operant procedure, each cue was associated with one of six probabilities of foputhi8, exce

each trial was fixed at 10 s in length, and if food was scheduled to be delivered, it was not dependent on
screen pecks at the disk.
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Figure 6. Peck density plots for each of the six Pavlovian cue trial types, collapsed across subject. The peck density
plot models a smooth surface that describes how dense the data points are at each point in that surface and functions
like a topographical map. Thiet adds a set of contour lines showing the density in 5% intervals in which the
densest areas are encompassed first. The JMP (Version 8, SAS Institute, Cary, NC) bivariate nonparametric density
function was used to generate these plots. Reprintedd@tdme®, Young, and Blaisdell (2010b) with permission.

Peck density plots in Figure 6 show the spatial variation elicited by each of the Pavlovian cues. As
with the operant procedure, screen pecks became more variable as probability of rewardtegnaled by
Pavlovian cue went down. Figure 7 shows the quantification of variation in the spatial (top) and temporal
(bottom) dimensions. As in the operant procedure, response variation in both dimensions was inversely
related to the signal value of the Pavlowisgs. Thus, variation of behavior is inversely related to
probability of reward for both instrumental and Pavlovian contingencies. The top panel of Figure 8
reveals the flatter, wider probability distribution of IRTs on the three-lewasted trials (4.4%),
relative to the three more frequently rewarded trials (> 12.5%). Thus, as with operant behavior, lower
probabilities of reward produced a greater variety of IRTs both shorter and longer than the mean.
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Figure 7. Top panel: Graph of the log of theean distance (in pixels) from the individual bird median spatial
location as a function of reward probability. The raw values of the dependent variable are locatedsidethe right
vertical axiBottom panelLog(IRT) of temporal distance (in secondsih the mean log(IRT) for each subject as a
function of reward probability. Error bars denote standard errors of the means. Reprinted from Stahlman, Young,
and Blaisdell (2010b) with permission.
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variable are located on the rigide vertical axis. Error bars denote standard errors of the means. Reprinted from
Stahlman, Young, and Blaisdell (2010b) with geymis
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This result is particularly interesting because variability of behavior is dependent on the likelihood
of food delivery even when the response is entirely inconsequential. Despite its impotence, pecking was
acquired and maintained throughtoaining. We found that Pavlovian responding was more variable in
both spatial and temporal domains on trials signaling a low probability of reinforcement. This indicates
that elicited behavior is an inverse function of Pavlovian expectation of pasdivesu

One would expect that if variability decreases as an increasing function of reward expectation,
then the closer the subject is within a trial to the time that a reward might be expected, the less variable
should be the response. Gharib, Derby,Ruofoerts (2001) reported this in an instrumentattipeak
procedure in rats. We also found this in our Pavlovian procedure with pigeons (Stahiman et al., 2010b). As
shown in Figure 8 (bottom panel), variation in screen peck locations decreased aatioreinthe
trial. Variability was lowest at the termination of the trial, when food would be delivered on rewarded
trials.
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Figure 9. Left panels: diagram of the experimental apparatus. Top panel: Example of a HI probability trial (100%
probabilityof reinforcement). The cube is a landmark indicating both the likelihood of reinforcement and the
location of food (F). Bottom panel: Example of a LO probability trial (20% probability of reinforcement). The
cylinder signals the probability of reinforcénserd possible location of food (f). Right panel: Frequency
distribution of nhumber of search locations per trial across the two trial types during Phase 2, across all trials and
subjects. 0Searcheso refers t o the terminatiom bfalrial.Ainseniblean of ¢
(+/- SEM) coefficient of variation (CV) of ratsodé searc
Reprinted from Stahlman and Blaisdell (2011a) with permission.

Of course, learning is not unique to geat situations such as a conditioning chamber. As such,
it is important to establish learning in rrawuralistic settings that may better reflect contingencies
animals should experience in the wild. We sought evidence tteaw thieExpeatould maniést in a
navigational task in an open field (Stahlman & Blaisdell, 2011a). In this experiment, rats learned to use two
different landmarks (small wood blocks that differed in shape and brightness) to find a hidden food
reward buried in sand in one of 1fsxon a large wooden board (Figure 9, left panel). The goal was
always located to the South of the landmark. The goal was always baited with food in the presence of the
highfood landmark, but only on 20% of the trials with thefdod landmark. If ratsad a lower
expectation of food on trials with the {tmed landmark, then we expected to find greater variability on
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these trials than on trials with the Hgtd landmark. Unlike in an operant chamber, we measured
variability in total number of cups sbad before the rat searched in the goal cup. Thus, if the rat had a
lower expectation of food on Idaod trials, they should explore more before looking in the goal
compared to on higlood trials. This is what we found (Figure 9, right panel).

If behavoral variation in the learned response is inversely related to outcome expectation in a
lawful way, then any manipulation that alters outcome expectation should correspondingly affect variation
in the learned response. The experiments described abou@ipllate the probability of reward. To
further explore this hypothesis, we investigated two additional manipulations that affect reward
expectation; reward magnitude and delay to reward (Stahlman & Blaisdell, 2011b).
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Figure 10.Top panel: Diagram of tf#x2 withinsubject design. Each of four discriminative stimuli was associated

with one of two probabilities of reinforcement and one of two magnitudes of reinforcement. Bottom panel:
Nonparametric density plots illustrating the mean spatial locaticck®fopethe touchscreen for each trial type,

collapsed across subject. The peck density plot models a smooth surface that describes how dense the data points are
at each point in that surface and functions like a topographical map. The plot addsraaetlivfesoshowing the

density in 5% intervals in which the densest areas are encompassed first. The black circle indicates the location and
size of the stimulus disc, which is centered at (0,0). Units ox- laotthy-axes are in pixelReprinted from

Stahlman and Blaisdell (2011b) with permission.

We previously found that the greatest difference in behavioral variation tended to occur between
cues signaling probabilities of food of 12.5% and 4.4% (e.g., Figure 6; Stahlman et al., 2010b). Thus, we
cho® to investigate the effect of changing the magnitude (Figure 10) or delay (Figure 11) of reward on
variability produced at these two levels of probability. Reward size was manipulated by presenting either a
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single 2.8 delivery of grain (small rewardd aonsecutive 288deliveries of grain for a total of 25.2 s of

reward (large reward; Figure 10, top panel). We replicated the difference in spatial and temporal variation
of pecking to the high probability (12.5%) and low probability (4.4%) cuesvaltmeward magnitude

as used by Stahiman et al. (2010a). Would increasing reward magnitude reduce response variation on 4.4%
probability trials, which typically show higher variation than do 12.5% trials? The screen peck density plots
in the bottom panaidf Figure 10 reveal that this was indeed the case. Figure 12 shows quantitatively that
both spatial (top left) and temporal (bottom left) variation to the 4.4% probability cue was significantly
reduced in the High magnitude relative to Low magnitudafofeement conditions.
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Figure 11.Top panel: Diagram of the 2x2 witkirbject design. Each of four discriminative stimuli was associated

with one of two probabilities of reinforcement and one of two delays to reinforcement. Bottom panel:
Nonparametridensity plots illustrating the spatial location of pecks on the touchscreen on each trial type for a
representative individual subject in the previous experiment (see caption for Figure 10). Reprinted from Stahlman
and Blaisdell (2011b) with permission.

A separate experiment replicated the difference in spatial and temporal variation in peck
responses between the 12.5% and 4.4% probability cues when reward was delivered immediately at the
end of the trial. Delaying the reward fyafter trial terminatio(Figure 11, topight panel), however,
resulted in increased spatial variance in the screen peck density plots on the 12.5% probability trials.
Figure 12 shows quantitatively that both spatial (top right) and temporal (bottom right) variation to the
12.%9% probability cue significantly increased in theDélay relative to-$ Delay to reinforcement
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