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Abstract: 

We review converging lines of evidence describing the negative relationship found between the signaled 

probability of food and response variation. This relationship is quite general: It is observed in both 

temporal and spatial behavioral dimensions, in both rats and pigeons, and in both the operant chamber 

and in open-field settings. Response variation is also greater under conditions involving smaller or delayed 

food rewards compared to larger or immediate rewards. These data support a new Law of Expect which 

states that outcome expectation is a determinant of response variation, with variation increasing or 

decreasing with a decrease or increase in outcome expectation, respectively. By comparison, we present 

simulations of a Modified Law of Effect extending the explanatory power of Thorndike’s original Law. While 

this Modified Law of Effect has improved explanatory power, it fails to account for all of the empirical data. 

The Law of Expect also fails to account for all of the empirical phenomena. Thus, both Laws are necessary. 

Investigations into the neural basis of these laws may lead to new insights into the generation and 

regulation of creative behavior and to a better understanding of the neural systems involved in learned 

behavior. 
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Resumen 

Se revisan líneas convergentes de evidencia y describimos la relación negativa encontrada entre la 

probabilidad señalizada de alimento y la variabilidad de respuesta. Esta relación es bastante general: se 

observa en las dimensiones temporal y espacial del comportamiento, tanto en ratas como palomas, y tanto 

en la cámara operante como en situaciones de campo abierto. La variabilidad de la respuesta también es 

mayor en condiciones que implican recompensas de comida más pequeñas o demoradas, comparadas con 

recompensas más grandes o más inmediatas. Estos datos apoyan una nueva Ley de Expectativa que 

establece que la expectativa de resultados es un determinante de la variabilidad de la respuesta, creciendo o 
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decreciendo en relación a una disminución o un aumento en la expectativa de resultados, respectivamente. 

Presentamos simulaciones de una Ley del Efecto Modificada que extiende el poder explicativo de la Ley 

original de Thorndike. Aunque que esta Ley del Efecto Modificada posee mayor poder explicativo, no da 

cuenta de todos los datos empíricos. La Ley de Expectativa tampoco explica todos los fenómenos 

empíricos. Por esta razón, ambas leyes son necesarias. La investigación sobre las bases neurales de estas 

leyes puede conducir a nuevas ideas sobre la generación y regulación de la conducta creativa y a una mejor 

comprensión de los sistemas neurales implicados en el comportamiento aprendido. 

Palabras clave: Ley del Efecto, Ley de la Expectativa, Variación, Variabilidad, Expectativa, Aprendizaje 

 

Variation is fundamental to Darwin’s theory of evolution by natural selection (Darwin, 1859). The 

process of selection operates on the substrate of heritable phenotypic variation to shape the evolution of 

traits. As powerful as it is, there are limits to the scope of evolutionary processes. Most notably, evolution 

does not act on the individual, but only on populations of individuals. Thus, the forces of natural selection 

do not continue to shape an individual’s phenotype.  

Skinner famously wrote, “Where inherited behavior leaves off, the inherited modifiability of the 

process of conditioning takes over” (Skinner, 1953, p. 83). That is, organisms whose behavior is modified 

through learning processes are not limited to a fixed behavioral phenotype. The analogy between natural 

selection and learning through reinforcement suggests that processes of variation and selection that are 

prevalent in evolutionary analyses should be equally prevalent in analyses of learned behavior. Indeed, 

selection has been of central importance in learning theory. Processes of behavioral variation, however, 

have received much less attention (Epstein, 1991; Roberts, 2014). This is surprising given the large 

amount of work on phenotypic variation in evolutionary biology, with a range of mechanisms including 

genetic mutation and polymorphisms, genetic recombination during sexual reproduction, epigenetics and 

developmental processes, and other environmental regulatory factors. A comparable set of mechanisms by 

which behavioral variation is modified have not yet become of central interest in learning theory. Instead, 

it is often assumed that selection acts on a preexisting amount of behavioral variation without explicitly 

noting where this variation comes from, nor how it contributes to the shaping of learned behavior. 

Epstein’s ingenious generativity theory has been proposed as a holistic account for the orderliness of 

behavioral variability (see Epstein, 2014, for a cogent account of the theory). The theory provides a formal 

account for how novel behavior emerges predictably from conditions in which behavior is ineffective or 

the conditions themselves are novel. Nevertheless, it is agnostic with respect to (or perhaps eschews 

accounts in terms of) psychological mechanisms that regulate behavioral variation. 

In the past, others and we have made the claim that expectation of the outcome plays a central 

mechanistic role in the modulation of behavioral variation. In this article, we provide an overview of our 

research on this topic. We then discuss whether outcome expectation is a necessary theoretical construct 

to explain these results. 

Empirical studies 

An early clue to the role of expectation in driving behavioral variation comes from the study of 

extinction of learned behavior. Historically, researchers reported that behavioral variation increases 

markedly during extinction of operant behavior. When a previously reinforced response (e.g., lever 

pressing) is no longer followed by reward, the action does not merely become less frequent; behavior also 

tends to become more variable in nature. This relationship has been well documented (Antonitis, 1951; 

Balsam, Deich, Ohyama, & Stokes, 1998; Eckerman & Lanson, 1969; Frick & Miller, 1951; Herrick & 
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Bromberger, 1965; Millenson & Hurwitz, 1961; Neuringer, Kornell, & Olufs, 2001; Notterman, 1959; 

Stebbins & Lanson, 1962). 

 

Figure 1. Standard deviations of prepoke times as a function of peck order and experimental phase. Data from 
Guilhardi and Church (2006). The legend identifying the various lines is in two parts: half in the upper panel, half in 
the lower panel. Each point is a mean over 24 rats. Reprinted from Stahlman, Roberts, and Blaisdell (2010a) with 
permission. 

 

 

Figure 2. The distribution of prepoke times as a function of training condition. Data from Guilhardi and Church 
(2006). Each point is a mean over 24 rats, three fixed-interval values, and two experiments. Reprinted from 
Stahlman, Roberts, and Blaisdell (2010a) with permission. 

 

 

Figure 1. Standard deviations of prepoke times as a function 
of peck order and experimental phase. Data from Guilhardi 
and Church (2006). The legend identifying the various lines 
is in two parts: half in the upper panel, half in the lower 
panel. Each point is a mean over 24 rats. Reprinted from 
Stahlman, Roberts, and Blaisdell (2010a) with permission. 

 

Figure 2. The distribution of prepoke times as a function of 
training condition. Data from Guilhardi and Church (2006). 
Each point is a mean over 24 rats, three fixed-interval values, 
and two experiments. Reprinted from Stahlman, Roberts, and 
Blaisdell (2010a) with permission. 
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We confirmed this in a reanalysis of the raw nosepoke data from a study by Guilhardi and Church 

(2006) reporting the extinction of operant behavior in the rat (Stahlman, Roberts, & Blaisdell, 2010a). 

Figure 1 shows that standard deviations of time to first poke and interpoke interval (prepoke times) for 

subsequent pokes increased during extinction after initial training on various fixed-interval (FI) schedules 

of food reinforcement. Importantly, Figure 2 shows that the distribution of prepoke times was not shifted, 

as predicted by a change in mean response rate, but broadened during extinction. Thus, during extinction 

when expectation of a food reward diminishes, variation in the timing of the previously-reinforced 

responses increased. 

An interpretation of this relationship in terms of outcome expectation is, however, problematic. 

Many factors differ between training and extinction, however, confounding an interpretation purely in 

terms of outcome expectation. Extinction differs in non associative factors. The density of reward is lower 

during extinction than during acquisition. Response rates tend to be lower (after the extinction burst has 

subsided) during extinction as well. Associative factors also differ between extinction and established 

behavior late in acquisition. One of them is expectation of reward, which is lower during extinction than 

after acquisition. Context conditioning can also differ, being lower during extinction when the association 

between the context and the outcome is also undergoing extinction. The context may become a 

modulator of extinction learning, as is demonstrated in studies of renewal (Bouton & King, 1983).  

 

Figure 3. Preresponse time as a function of response order. Both axes are logarithmic. Data from Gharib, Gade, 
and Roberts (2004), Experiment 2, 100%/25% phase. First = data from the first bar presses during a trial. Later = 
data from all later bar presses. Each point is a mean over 11 rats. Reprinted from Stahlman, Roberts, and Blaisdell 
(2010a) with permission. 
 

These problems necessitate the adoption of a method other than extinction that avoids these 

confounding factors if one is to establish a causal link between outcome expectation and behavior 

variation. Gharib, Gade, and Roberts (2004) developed a steady-state operant procedure with which to 

cleanly study the role of outcome expectation in behavior variation. Rats were trained to press a bar for a 

food reward. There were two instrumental cues (discriminative stimuli) used in each session, with 50% of 

the trials presenting a high-food cue and the remaining trials presenting a low-food cue. On trials with the 

high-food cue, lever pressing was rewarded on every trial. Lever pressing was only reinforced on 25% of 

trials with the low-food cue. Figure 3 shows results from this experiment. The cue signaling a lower 

reward probability produced higher variation in lever-press times. In Gharib et al.’s procedure, trials were 

Figure 3. Preresponse time as a function of response 
order. Both axes are logarithmic. Data from Gharib, Gade, 
and Roberts (2004), Experiment 2, 100%/25% phase. First 
= data from the first bar presses during a trial. Later = 
data from all later bar presses. Each point is a mean over 
11 rats. Reprinted from Stahlman, Roberts, and Blaisdell 
(2010a) with permission. 



Conductual, Revista Internacional de Interconductismo y Análisis de Conducta  Law of Effect or Expect? 

 
 

 
  65 

 

Ref.: Conductual, 2016, 4, 2, 61-90 ISSN: 2340-0242  

randomly mixed. Thus, most factors were equated for the two types of trials, including overall density of 

food in each session, time since most recent food, overall session response rate, time since most recent 

response, and context conditioning. This leaves reward expectancy signaled by each cue due to their 

respective histories of reinforcement as the most likely factor determining variation in lever press times. 

These data suggest a general Law of Expect: 

Expectation of reward modulates response variation such that they have a negative relationship. 

As expectation increases, variation decreases. This reflects exploitation of a known resource. 

As expectation decreases, variation increases. This reflects exploration for other resources when the 

known reward is expected to be of low probability. Humans and pigeons have been shown to be sensitive 

to probabilities of signaled reward as a modulator of the exploration and exploitation decisions (Racey et 

al., 2011), thus, it is not surprising to find this in rats, too. Bolles (1972) went so far as to propose that 

psychological processes based on expectancy could completely replace those based on S-R habit as an 

explanation for the fundamental principles of reinforcement that has received so much attention in the 

behavior-analytic tradition of Thorndike and Skinner. For example, based on a substantive amount of 

research on expectancies beginning with the work of Tolman (1932), Bolles suggested that three 

postulates concerning expectancy could provide a complete account of reinforcement learning: a) the 

strength of the S-O expectancy (i.e., the Pavlovian association), b) the strength of the R-O expectancy 

(which underlies goal-directed behavior), and c) the value of S (i.e., incentive motivation). For a more 

recent review of these topics, see Blaisdell (2008). 

 

Figure 4. Peck location as a function of probability of reward of operant screen pecks. The left panels show 
horizontal position, the right panels, vertical position, both measured from the lower left-hand corner of the 
touchscreen. Each dotted line is from a different bird. The solid line shows the mean over birds. The two numbers 
in the upper right of each graph are p values from one-tailed t tests of the hypothesis that the values are increasing 
(first number) or decreasing (second number). Reprinted from Stahlman, Roberts, and Blaisdell (2010a) with 
permission. 

 

If this relationship is general, then evidence should be found in a wide range of learning 

situations, test settings, response types, and species. We tested the generality of this rule in several ways: in 

Figure 4. Peck location as a function of probability of reward of 
operant screen pecks. The left panels show horizontal position, the 
right panels, vertical position, both measured from the lower left-
hand corner of the touchscreen. Each dotted line is from a different 
bird. The solid line shows the mean over birds. The two numbers in 
the upper right of each graph are p values from one-tailed t tests of 
the hypothesis that the values are increasing (first number) or 
decreasing (second number). Reprinted from Stahlman, Roberts, and 
Blaisdell (2010a) with permission. 
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different species (pigeons and rats), in different dimensions of behavior (temporal and spatial), and in 

different types of experimental settings (operant chamber and open field).  

First, we investigated the rule in operant screen pecking in pigeons (Stahlman et al., 2010a). 

Pigeons were presented with six types of trials in each session. On each trial, a discriminative stimulus (a 

colored circle) was presented on the center of the screen. The pigeon had to complete a random-ratio 

(RR) 5 requirement of pecking to the cue to end the trial. Upon the termination of a trial, the cue 

disappeared from the screen and the intertrial interval (ITI) began. There were 6 cues, each associated 

with a different probability of reward (2.8 s access to mixed grain from a hopper below the touchscreen) 

ranging from 100% to 0.6%. If reward was scheduled, it was delivered immediately upon the termination 

of a trial. 

 

Figure 5.  Prepeck times as a function of probability of reward of operant screen pecking. First pecks are the first 
pecks during a trial; later pecks are all later pecks during that trial. The two numbers in the upper right of each graph 
are p values from one-tailed t tests of the hypothesis that the values are increasing (first number) or decreasing 
(second number). Each dotted line is from a different bird. The solid line shows the mean over birds. Reprinted 
from Stahlman, Roberts, and Blaisdell (2010a) with permission. 
 

We were interested in the effects of reward probability signaled by the cue on variation in two 

dimensions of the behavior: temporal and spatial. To assess temporal variation, we measured log 

interresponse times (IRT) between pecks. To assess spatial variation, we measured standard deviation of 

peck locations on the screen. Using this procedure, we have observed that response variation in the spatial 

(Figure 4, bottom panels) and temporal (Figure 5, bottom panels) dimensions increases as a decreasing 

function of probability of reward signaled by the cue. This relationship held for both peck location (i.e., 

spatial domain) and the interpeck interval (temporal domain). As with the results from rats (Gharib et al., 

2004), variability was uncorrelated with mean location or interresponse times (IRTs; top panels of Figures 

4 and 5), suggesting that the two aspects of behavior are the result of independent processes.  

Our results from the pigeon operant pecking procedure appear to support the general principle of 

the Law of Expect: the greater the expectation of an appetitive reinforcer, the less variability would be 

present in the response. This was true for both temporal and spatial dimensions of behavior. But would 

 

Figure 5.  Prepeck times as a function of probability of reward of operant 
screen pecking. First pecks are the first pecks during a trial; later pecks 
are all later pecks during that trial. The two numbers in the upper right 
of each graph are p values from one-tailed t tests of the hypothesis that 
the values are increasing (first number) or decreasing (second number). 
Each dotted line is from a different bird. The solid line shows the mean 
over birds. Reprinted from Stahlman, Roberts, and Blaisdell (2010a) with 
permission. 
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this same rule apply to a Pavlovian contingency in which delivery of the reward is not dependent on the 

subject’s response? We conducted an autoshaping procedure (Brown & Jenkins, 1968; Williams & 

Williams, 1969) similar to the operant procedure described above (Stahlman, Young, & Blaisdell, 2010b). 

As in the operant procedure, each cue was associated with one of six probabilities of food US, except that 

each trial was fixed at 10 s in length, and if food was scheduled to be delivered, it was not dependent on 

screen pecks at the disk.  

 

Figure 6. Peck density plots for each of the six Pavlovian cue trial types, collapsed across subject. The peck density 
plot models a smooth surface that describes how dense the data points are at each point in that surface and functions 
like a topographical map. The plot adds a set of contour lines showing the density in 5% intervals in which the 
densest areas are encompassed first. The JMP (Version 8, SAS Institute, Cary, NC) bivariate nonparametric density 
function was used to generate these plots. Reprinted from Stahlman, Young, and Blaisdell (2010b) with permission. 
 

Peck density plots in Figure 6 show the spatial variation elicited by each of the Pavlovian cues. As 

with the operant procedure, screen pecks became more variable as probability of reward signaled by the 

Pavlovian cue went down. Figure 7 shows the quantification of variation in the spatial (top) and temporal 

(bottom) dimensions. As in the operant procedure, response variation in both dimensions was inversely 

related to the signal value of the Pavlovian cues. Thus, variation of behavior is inversely related to 

probability of reward for both instrumental and Pavlovian contingencies. The top panel of Figure 8 

reveals the flatter, wider probability distribution of IRTs on the three lowest-rewarded trials (< 4.4%), 

relative to the three more frequently rewarded trials (> 12.5%). Thus, as with operant behavior, lower 

probabilities of reward produced a greater variety of IRTs both shorter and longer than the mean. 

 

 
 
 
 
 
 
 
 

Figure 6. Peck density plots for each of the six Pavlovian cue trial types, collapsed 
across subject. The peck density plot models a smooth surface that describes how 
dense the data points are at each point in that surface and functions like a 
topographical map. The plot adds a set of contour lines showing the density in 5% 
intervals in which the densest areas are encompassed first. The JMP (Version 8, SAS 
Institute, Cary, NC) bivariate nonparametric density function was used to generate 
these plots. Reprinted from Stahlman, Young, and Blaisdell (2010b) with permission. 
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Figure 7. Top panel: Graph of the log of the mean distance (in pixels) from the individual bird median spatial 
location as a function of reward probability. The raw values of the dependent variable are located on the right-side 
vertical axis. Bottom panel: Log(IRT) of temporal distance (in seconds) from the mean log(IRT) for each subject as a 
function of reward probability. Error bars denote standard errors of the means. Reprinted from Stahlman, Young, 
and Blaisdell (2010b) with permission. 
 

 

Figure 8. Top panel: Response probability as a function of IRT (in seconds) on a logarithmic scale for the lower and 
higher probability Pavlovian stimuli (cf. Gharib et al., 2004). Bottom panel: Graph of the log of the mean distance (in 
pixels) from the individual bird median spatial location as a function of trial time. The raw values of the dependent 
variable are located on the right-side vertical axis. Error bars denote standard errors of the means. Reprinted from 
Stahlman, Young, and Blaisdell (2010b) with permission. 

 

 

 

 

Figure 7. Top panel: Graph of the log of the mean distance (in 
pixels) from the individual bird median spatial location as a 
function of reward probability. The raw values of the dependent 
variable are located on the right-side vertical axis. Error bars 
denote standard errors of the means. Log(IRT) of temporal 
distance (in seconds) from the mean log(IRT) for each subject as 
a function of reward probability. Error bars denote standard 
errors of the means. Reprinted from Stahlman, Young, and 
Blaisdell (2010b) with permission.  
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This result is particularly interesting because variability of behavior is dependent on the likelihood 

of food delivery even when the response is entirely inconsequential. Despite its impotence, pecking was 

acquired and maintained throughout training. We found that Pavlovian responding was more variable in 

both spatial and temporal domains on trials signaling a low probability of reinforcement. This indicates 

that elicited behavior is an inverse function of Pavlovian expectation of positive outcomes. 

One would expect that if variability decreases as an increasing function of reward expectation, 

then the closer the subject is within a trial to the time that a reward might be expected, the less variable 

should be the response. Gharib, Derby, and Roberts (2001) reported this in an instrumental peak-time 

procedure in rats. We also found this in our Pavlovian procedure with pigeons (Stahlman et al., 2010b). As 

shown in Figure 8 (bottom panel), variation in screen peck locations decreased as a function of time in the 

trial. Variability was lowest at the termination of the trial, when food would be delivered on rewarded 

trials. 

 

Figure 9. Left panels: diagram of the experimental apparatus. Top panel: Example of a HI probability trial (100% 
probability of reinforcement). The cube is a landmark indicating both the likelihood of reinforcement and the 
location of food (F). Bottom panel: Example of a LO probability trial (20% probability of reinforcement). The 
cylinder signals the probability of reinforcement and possible location of food (f). Right panel: Frequency 
distribution of number of search locations per trial across the two trial types during Phase 2, across all trials and 
subjects. “Searches” refers to the total number of cups investigated prior to the termination of a trial. Inset: Mean 
(+/- SEM) coefficient of variation (CV) of rats’ search frequency across the two levels of reward probability. 
Reprinted from Stahlman and Blaisdell (2011a) with permission. 
 

Of course, learning is not unique to contrived situations such as a conditioning chamber. As such, 

it is important to establish learning in more-naturalistic settings that may better reflect contingencies 

animals should experience in the wild. We sought evidence that the Law of Expect would manifest in a 

navigational task in an open field (Stahlman & Blaisdell, 2011a). In this experiment, rats learned to use two 

different landmarks (small wood blocks that differed in shape and brightness) to find a hidden food 

reward buried in sand in one of 16 cups on a large wooden board (Figure 9, left panel). The goal was 

always located to the South of the landmark. The goal was always baited with food in the presence of the 

high-food landmark, but only on 20% of the trials with the low-food landmark. If rats had a lower 

expectation of food on trials with the low-food landmark, then we expected to find greater variability on 

 

Figure 9. Left panels: diagram of the experimental apparatus. Top panel: Example 

of a HI probability trial (100% probability of reinforcement). The cube is a 

landmark indicating both the likelihood of reinforcement and the location of food 

(F). Bottom panel: Example of a LO probability trial (20% probability of 

reinforcement). The cylinder signals the probability of reinforcement and possible 

location of food (f). Right panel: Frequency distribution of number of search 

locations per trial across the two trial types during Phase 2, across all trials and 

subjects. “Searches” refers to the total number of cups investigated prior to the 

termination of a trial. Inset: Mean (+/- SEM) coefficient of variation (CV) of rats’ 

search frequency across the two levels of reward probability. Reprinted from 

Stahlman and Blaisdell (2011a) with permission. 
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these trials than on trials with the high-food landmark. Unlike in an operant chamber, we measured 

variability in total number of cups searched before the rat searched in the goal cup. Thus, if the rat had a 

lower expectation of food on low-food trials, they should explore more before looking in the goal 

compared to on high-food trials. This is what we found (Figure 9, right panel). 

If behavioral variation in the learned response is inversely related to outcome expectation in a 

lawful way, then any manipulation that alters outcome expectation should correspondingly affect variation 

in the learned response. The experiments described above all manipulate the probability of reward. To 

further explore this hypothesis, we investigated two additional manipulations that affect reward 

expectation; reward magnitude and delay to reward (Stahlman & Blaisdell, 2011b). 

 

Figure 10. Top panel: Diagram of the 2x2 within-subject design. Each of four discriminative stimuli was associated 
with one of two probabilities of reinforcement and one of two magnitudes of reinforcement. Bottom panel: 
Nonparametric density plots illustrating the mean spatial location of pecks on the touchscreen for each trial type, 
collapsed across subject. The peck density plot models a smooth surface that describes how dense the data points are 
at each point in that surface and functions like a topographical map. The plot adds a set of contour lines showing the 
density in 5% intervals in which the densest areas are encompassed first. The black circle indicates the location and 
size of the stimulus disc, which is centered at (0,0). Units on both x- and y-axes are in pixels. Reprinted from 
Stahlman and Blaisdell (2011b) with permission. 
 

We previously found that the greatest difference in behavioral variation tended to occur between 

cues signaling probabilities of food of 12.5% and 4.4% (e.g., Figure 6; Stahlman et al., 2010b). Thus, we 

chose to investigate the effect of changing the magnitude (Figure 10) or delay (Figure 11) of reward on 

variability produced at these two levels of probability. Reward size was manipulated by presenting either a 

 

 

 

Figure 10. Top panel: Diagram of the 2x2 within-subject design. Each of 
four discriminative stimuli was associated with one of two probabilities of 
reinforcement and one of two magnitudes of reinforcement. Bottom panel: 
Nonparametric density plots illustrating the mean spatial location of pecks on the 
touchscreen for each trial type, collapsed across subject. The peck density plot 
models a smooth surface that describes how dense the data points are at each 
point in that surface and functions like a topographical map. The plot adds a set 
of contour lines showing the density in 5% intervals in which the densest areas 
are encompassed first. The black circle indicates the location and size of the 
stimulus disc, which is centered at (0,0). Units on both x- and y-axes are in pixels. 
Reprinted from Stahlman and Blaisdell (2011b) with permission. 
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single 2.8-s delivery of grain (small reward) or 9 consecutive 2.8-s deliveries of grain for a total of 25.2 s of 

reward (large reward; Figure 10, top panel). We replicated the difference in spatial and temporal variation 

of pecking to the high probability (12.5%) and low probability (4.4%) cues at the small reward magnitude 

as used by Stahlman et al. (2010a). Would increasing reward magnitude reduce response variation on 4.4% 

probability trials, which typically show higher variation than do 12.5% trials? The screen peck density plots 

in the bottom panel of Figure 10 reveal that this was indeed the case. Figure 12 shows quantitatively that 

both spatial (top left) and temporal (bottom left) variation to the 4.4% probability cue was significantly 

reduced in the High magnitude relative to Low magnitude of reinforcement conditions.  

 

Figure 11. Top panel: Diagram of the 2x2 within-subject design. Each of four discriminative stimuli was associated 
with one of two probabilities of reinforcement and one of two delays to reinforcement. Bottom panel: 
Nonparametric density plots illustrating the spatial location of pecks on the touchscreen on each trial type for a 
representative individual subject in the previous experiment (see caption for Figure 10). Reprinted from Stahlman 
and Blaisdell (2011b) with permission. 
 

A separate experiment replicated the difference in spatial and temporal variation in peck 

responses between the 12.5% and 4.4% probability cues when reward was delivered immediately at the 

end of the trial. Delaying the reward by 4-s after trial termination (Figure 11, top right panel), however, 

resulted in increased spatial variance in the screen peck density plots on the 12.5% probability trials. 

Figure 12 shows quantitatively that both spatial (top right) and temporal (bottom right) variation to the 

12.5% probability cue significantly increased in the 4-s Delay relative to 0-s Delay to reinforcement 

 

 

 

 

Figure 11. Top panel: Diagram of the 2x2 within-subject design. Each of four 
discriminative stimuli was associated with one of two probabilities of reinforcement 
and one of two delays to reinforcement. Bottom panel: Nonparametric density plots 
illustrating the spatial location of pecks on the touchscreen on each trial type for a 
representative individual subject in the previous experiment (see caption for Figure 
10). Reprinted from Stahlman and Blaisdell (2011b) with permission. 
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conditions. Thus, manipulations that increased or decreased the expectation of reward had the predicted 

systematic effects on response variability. 

 

Figure 12. Top Left: Mean difference score of the mean standard deviation of x-axis response location as a function 
of reward probability (High = 12.5%, Low = 4.4%; Large = 25.2 s reward, Small = 2.8 s reward). Values were 
obtained by subtracting each bird’s mean variation on Large trials from their variation on Small trials for each level 
of reward probability. The dashed lines indicate individual birds; the solid line indicates the mean across birds. 
Bottom Left: Mean difference score of the mean standard deviation of log IRT as a function of reward probability. 
Top Right: Mean difference score of the mean standard deviation of x-axis response location as a function of reward 
probability (High prob = 12.5%, Low prob = 4.4%; Imm = 0-s delay, Del = 4-s delay). Bottom Right: Mean 
difference score of the mean standard deviation of log IRT as a function of reward probability. Reprinted from 
Stahlman and Blaisdell (2011b) with permission. 
 

Functional analysis of the Law of Expect 

To recap, we found evidence for the Law of Expect, expectation-controlled response variability, in 

both the conditioning chamber and the open field, in rats and pigeons, and involving operant and 

Pavlovian contingencies. Response variation was observed in both spatial and temporal dimensions of 

behavior, as well as in choice behavior in the open field. The Law of Effect describes the well-known role of 

reinforcement in selecting for learned responses. It operates by strengthening Stimulus-Response (S-R) 

associations for reinforced responses, but weakening S-R associations for non-reinforced responses. The 

strength of each S-R association determines the probability of the response. The Law of Expect, by contrast, 

describes the role of outcome (reward) expectation on increasing or decreasing variation in the response. 

It operates through the strengthening and weakening of Stimulus-Outcome (S-O) associations. The 

strength of each S-O association determines the degree of variation of the response. Stronger S-O 

associations bias the individual toward more stereotyped learned responses indicative of an exploitation 

behavioral mode. Weaker S-O associations bias the individual toward more variable responses indicative 

of an exploration behavior mode. 

It makes a good deal of sense for an animal to behave with greater variability if reward is unlikely. 

Gharib et al. (2004) describe the adaptive functionality of the relationship between variability and reward 

expectation thusly: 

If an animal’s actions vary too little, it will not find better ways of doing things; if they vary too 
much, rewarded actions will not be repeated. So at any time there is an optimal amount of 
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variation, which changes as the costs and benefits of variation change. Animals that learn 
instrumentally would profit from a mechanism that regulates variation so that the actual amount 
is close to the optimal amount. (p. 271). 

The Law of Expect should naturally occur under any situations where response variation is driven 

by outcome expectation. That is, organisms that are capable of learning through reward (instrumental and 

Pavlovian), should be equipped by evolution with a learning mechanism that instantiates the Law of Expect, 

just as it is equipped with a learning mechanism that instantiates the Law of Effect. Suppose a new region of 

space (away from the cue on the touchscreen or from the landmark in the open field) suddenly became 

available as a “secret cache” of reward. The likelihood that the subject would discover this new resource 

would be significantly higher on high-variation trials than on low-variation trials. Likewise if a new method 

of procuring a reward were made available, such as a change in the timing or sequence of responses, either 

in absolute terms or relative to prior rewarded responses (Neuringer, 2002; 2004). Greater variation in the 

form, timing, or sequence of the response entails a greater likelihood of discovering the new reward (see 

also Pecoraro, Timberlake, & Tinsley, 1999). 

These suppositions elegantly map on to real world foraging situations. While an animal is foraging 

for food, depletion of the local food source should increase the probability of searching elsewhere. 

Likewise, if one initially successful method of extracting embedded food (mollusks buried under sand, 

grubs hiding in the bark of a tree, etc.) stops being successful, perhaps changing the form of the extraction 

response (e.g., digging more forcefully, twisting the beak into a crack in the bark a different way) may 

increase the probability of success. 

Variability in behavior has been proposed to play a functional role in the continuous adaptation of 

behavior in many domains, including motor learning and rehabilitation (Bartlett, Wheat, & Robbins, 2007; 

Davids et al., 2003; Manoel & Connolly, 1995; Riley & Turvey, 2002; Wu et al., 2014), decision making 

(Daw et al., 2006), modulation of stress and self-regulatory strength (Geisler et al., 2010; Krypotos et al., 

2011), sensory integration (Gordus et al., 2015), and differences in fitness between social groups 

(Modlmeiera & Foitzika, 2011). 

The Modified Law of Effect 

We previously noted that Epstein’s generativity theory avoids accounting for behavior in terms of 

psychological mechanism and instead provides solely a formal account of novel behavior (e.g., Epstein, 

2014). Yet, our data suggest that outcome expectancy is an important regulator of response variation. Is 

there any alternative to outcome expectancy that does not rely on a cognitive (i.e., representational) 

account of response variation? Let’s revisit the Law of Effect to see what led us to propose the Law of 

Expect. According to Thorndike’s (1911) Law of Effect, S-R associations are strengthened when followed by 

a rewarding outcome, and weakened when followed by nonreward (or other dissatisfying outcomes, e.g., 

punishment). Once an S-R association has been weakened through nonreward, there is no way to increase 

it again without directly rewarding it. Thus, following acquisition, extinction of the rewarded S-R 

association should have no effect on the other ineffective S-R associations that had been weakened when 

previously followed by nonreward. Because of this, those other responses whose associations to S had 

been weakened should remain of low likelihood, and their resurgence should not be observed. In contrast 

to this, Sweeney and Shahan (2016) found responding of a non-rewarded response to increase during 

extinction of a previously-rewarded response. 

Let’s consider modifying the Law of Effect to see if we can remove this constraint. First, assume 

that in any particular situation (a conditioning chamber, the presence of a discriminative stimulus, etc.) all 
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possible responses have a prior probability4. Second, we can leave the first part of the law the same. That 

is, Postulate 1 is that an S-R association is strengthened when followed by reward. Now consider adding a 

second postulate that, there exist inhibitory connections between all possible responses, such that as the S-

R strength for one response increases, it exerts an increased amount of mutual inhibition to all other 

responses, thereby decreasing their likelihood of being expressed. This modification to the Law of Effect is 

captured by the dashed unidirectional links between all potential responses shown in Figure 13 (in which 

only 4 of likely many possible responses are shown to simplify exposition of the theory). By proposing a 

process of mutual inhibition, if R1 is followed by reward, the S-R1 association is strengthened, but 

inhibitory links from R1 to R2, R3, R4, & etc. increase in strength as well.  

 

Figure 13. Associative structure of the Modified Law of Effect. Excitatory S-R1 association (black arrow) is 
strengthened when R1 is followed by reward. Inhibitory S-R1 association (gray connection) is strengthened when R1 
is followed by nonreward. Two unidirectional mutual inhibitory links (dotted connections) exist between each 
response. Increases in excitatory S-R1 connection increases R1’s mutual inhibition to all other responses. Increases in 
inhibitory S-R1 connection decreases R1’s mutual inhibition to all other responses. 
 

We must also postulate a change in the second part of the original law. Postulate 3 is that any 

response followed by nonreward does not weaken the prior S-R strength, but instead results in 

strengthening of an inhibitory S-R association. This is shown by the dark gray inhibitory connection 

between the Stimulus and R1 in Figure 13. Thus, if R1 is not followed by reward, its prior excitatory S-R 

association remains intact, but an inhibitory S-R association is strengthened. 

The three postulates can be stated as followed: 

1. Postulate 1: Response R followed by rewarding outcome O in the presence of stimulus S will 

strengthen an excitatory S-R association for R. 

2. Postulate 2: Response R followed by rewarding outcome O in the presence of stimulus S will 

strengthen the inhibitory R-R connections to all other responses Rn. 

3. Postulate 3: Response R followed by nonreward in the presence of stimulus S will strengthen 

an inhibitory S-R association for R. 

                                                     
4 We have intentionally avoided the issue of how a response is defined. Responses can be discrete individual actions, of which no 
two emitted or elicited responses are likely ever identical, or classes of similar responses, such as a lever press or a key peck, which 
are traditional operants. In our analysis, we treat responses in an idealized fashion as every possible discrete response that can 
occur in a situation. We have empirically demonstrated that attributes of responses, such as a location in time or space with 
respect to the situation inside the conditioning chamber or in an open field, vary in a continuous fashion. As a result, variation in 
spatial, temporal, and choice dimensions are predicted to result from changes in S-R associations for specific Rs, and mutual 
inhibition between Rs. 
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We also need a rule that maps learning onto behavior. The probability of a response is determined 

by the net excitatory S-R strength of the R, inhibitory S-R strength of the R, and total mutual inhibition 

received from all other Rs. The operation of these three postulates results in a Modified Law of Effect that 

can potentially account for a broader range of phenomena than could the original, including the inverse 

relationship between probability of reward and response variation. To test whether the Modified Law of 

Effect can account for the response variation phenomena reviewed above, we compared simulations of the 

Modified Law to the original Law of Effect. We also include simulations of the Modified Law with only one 

Postulate 2 (mutual inhibition) or 3 (inhibitory S-R associations), but not both, to assess the necessity and 

sufficiency of each postulate. 

Model Simulation Methods 

We compared four different models of instrumental learning involving variations of the Law of 

Effect. In all conditions, an agents’ behavioral repertoire was restricted to ten possible actions. On each 

trial, an agent performed an action with the maximal overall excitation out of all available alternatives. If 

all actions were strongly inhibited (i.e. overall excitation<0), no action was performed and the trial was 

recorded as an omission. In the Law of Effect (LoE) model, input excitation to each action determined the 

overall excitation. We then introduced either additional input inhibition (LoE+InInh) as a result of 

nonreward of an action, or mutual inhibition (LoE+mInh) between actions as additional model 

parameters. The final comparison model included both the input and mutual inhibition 

(LoE+InInh+mInh) to fully model the Modified Law of Effect (MLoE) as described above. 

Initial input excitation and inhibition values were drawn from independent normal distributions 

with means of 0.5 and standard deviations (SD) of 0.01, and therefore were on average balanced at 

baseline. Each action inhibited the other alternatives by mutual inhibition that was set to 50% of the 

resulting excitation (sum of input excitation and inhibition). Additionally, we introduced input noise 

(mean=0, SD=0.1) to account for a variety of factors, such as attention and interference (see Chan et al., 

2010; Ryan et al., 2012), that can affect animal behavior in experimental settings. A single action was set as 

correct for all agents. Each trial terminated with a reward if an agent selected the correct alternative and 

no reward otherwise. The input excitation and inhibition values were updated based on the observed 

outcome according to the linear operator rule (Bush & Mosteller, 1951; Kacelnik & Krebs, 1985): 

Int+1=Int(1-α)+αrt, where α (0.01) represents a learning rate, Int represents the input value at the current 

time and rt represents experienced reward. On each trial only the inputs to selected action were updated. 

In LoE and LoE+mInh conditions the input excitation was increased if the performed action was 

followed by reward and decreased if no reward was presented. In contrast, in LoE+InInh and 

LoE+InInh+mInh conditions, receiving a reward resulted in an increase in input excitation, whereas not 

receiving a reward led to increases in input inhibition. 

We compared the predictions of the models about response variability under conditions of 

different reward magnitudes (r=1.0, 0.9, 0.8, 0.7 or 0.6) and probabilities of reinforcement (1.0, 0.8, 0.5, 

0.2). In a separate set of simulations we introduced an extinction phase, during which no reward was 

presented regardless of the action chosen. We also analyzed response variability during training and 

extinction under the condition when response variability (i.e. performing different actions on consecutive 

trials) was reinforced. For these two sets of simulations the reward magnitude during the training phase 

was set to 1.0 and correct responses were reinforced 100% of the time during the acquisition phase. 

Finally, we addressed response variability in a successive anticipatory contrast procedure, where agents are 

initially trained under one reward magnitude and shifted to a different magnitude during the contrast 

phase. We present the results with reward magnitudes of 1 (large) and 0.7 (small). We simulated the 
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behavior of 100 agents in each condition for 10, 12 or 20 blocks of 100 trials. MATLAB R2015a 

(MathWorks, Natick, Massachusetts) was used in all analyses. All codes are available upon request. 

Model Simulation Results 

Figure 14 shows the simulations of the four models of response variation as a function of 

probability of reward signaled by four different discriminative stimuli. We tested values of reward 

probabilities of 1.0, 0.8, 0.5, and 0.2. As is apparent in the figure, two of the simulations successfully 

captured the monotonic rank ordering of the inverse relationship between probability and response 

variation as empirically shown by our pigeons. The two models that were successful both included the 

process of mutual inhibition. In contrast, the other two models were only partially successful in predicting 

the monotonic inverse relationship, correctly ordering the low response variation observed to the two 

highest reward probabilities (1.0 and 0.8). Surprisingly, both the original Law of Effect and the modified 

model that only included the process of input inhibition produced more response variation to the 0.5 

probability condition than to the 0.2 probability condition. Sensitivity analyses revealed that this increased 

variation to the 0.5 compared to the 0.2 probability condition did not depend on the value of free 

parameter α, or noise levels (unless they were reduced to 0) and was therefore a true emergent property of 

the models. Although we have not systematically assessed the underlying cause of increased variation, in 

both LoE and LoE+InInh, the 0.5 condition generates a pattern of input updating that balances increases 

and decreases in overall excitation due to reward and non-reward respectively, preserving the initial input 

strength. Such a condition can also render agents more sensitive to input noise, promoting behavioral 

shifting. Conversely, the 0.2 condition could have resulted in decreases in overall excitation across 

responses, leading to higher impact of increases in excitation due to reward when it occurred. 

Additionally, since agents were allowed to omit responding when all options were strongly inhibited, 

decreases in response variability in the 0.2 condition may be partially explained by response withholding. 

This ordering stands in stark contrast to the results demonstrated in our pigeons. Thus, it appears that 

including mutual inhibition is necessary to correctly model the empirical data with a Law of Effect type 

reinforcement learning mechanism. 

 

Figure 14. Simulations of the original Law of Effect (LoE, upper left), as well as the Modified Law of Effect 
(MLoE) with only inhibitory S-R links (LoE+InInh, lower left), only mutual inhbition (LoE+mInh, upper right), or 
both (LoE+InInh+mInh, lower right). Simulations show changes in response variability during acquisition and 
extinction as a function of probability of reward. 
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How does the Modified Law of Effect account for the finding that response variability is inversely 

correlated with probability of reward? If we consider that a stimulus associated with a high probability of 

reward can produce large increases in the excitatory strength of a relatively few rewarded S-R associations, 

then these Rs will exert strong mutual inhibition to all other responses. A stimulus associated with a 

relatively low probability of reward, on the other hand, would produce increases in both excitatory and 

inhibitory S-R associations for some Rs, thus causing these Rs to exert less mutual inhibition to all other 

responses.  As a result, a larger subset of the total possible responses will be emitted in situations of low 

probability relative to high probability of reward. Since behavior occurs as an unending stream (e.g., 

Epstein, 2014), the overall rate of responding should be affected relatively little by the different 

probabilities of reward (cf., upper panels of Figures 4 & 5), while the variance in responses is predicted to 

differ quite a lot. That is, the subject always must be doing something, even if it’s sleeping. A hungry 

pigeon, however, is unlikely to spend much time resting. Instead, it will spend time exploring the screen, 

which is a context of prior reinforcement (Racey et al., 2011). Thus, the Modified Law of Effect appears to 

provide a good account of the effects of reward probability on response variability. 

Somewhat similar results were also found in how the models simulate the effects of reward 

magnitude (Figure 15). We tested reward magnitudes of 1.0, 0.9, 0.8, 0.7, and 0.6. Both models that 

incorporated mutual inhibition correctly (i.e., in relation to the empirical data) found that lower 

magnitudes of reward produce higher amounts of response variability in a monotonic rank-order. Unlike 

the case with probability of reward, the original Law of Effect does correctly predict an inverse relationship 

between reward magnitude and response variation. The Modified Law that incorporates only input 

inhibition but not mutual inhibition is completely wrong in predicting no difference in response variation 

at asymptote. While it does model the correct rank order of reward magnitude to response variation early 

in learning, responses in all cases quickly converge on a complete absence of variation. 

 

Figure 15. Simulations of the original Law of Effect (LoE, upper left), as well as the Modified Law of Effect 
(MLoE) with only inhibitory S-R links (LoE+InInh, lower left), only mutual inhbition (LoE+mInh, upper right), or 
both (LoE+InInh+mInh, lower right). Simulations show changes in response variability during acquisition as a 
function of Magnitude of reward. 
 

What about the case of variation of Pavlovian responses (Stahlman et al., 2010b; Figure 6-8)? 

Here the application of the Modified Law of Effect seems less clear. Pavlovian responses, by definition, are 
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established without any response-reward contingency. Only if the Pavlovian responses can be 

reinterpreted as instrumental ones would we be able to apply the Modified Law of Effect. Autoshaping is a 

Pavlovian conditioning phenomenon that bears strong resemblance to instrumental conditioning more 

than to Pavlovian conditioning in many ways (Gormezano & Kehoe, 1975; Herrnstein & Loveland, 1972; 

Hursh, Navarick, & Fantino, 1974) and can be simulated by a model using bottom-up processes that 

ignore the Pavlovian-instrumental distinction (Burgos, 2007). So perhaps it is not surprising to find 

Pavlovian response variability to be inversely related to probability of US delivery. A true test of the 

application of the Modified Law of Effect requires a more conventional Pavlovian conditioning preparation 

that involves goal tracking rather than sign tracking behavior (Burns & Domjan, 1996; Lesaint et al., 

2014). 

Can the Modified Law of Effect account for the observation that response variation decreases with 

proximity to the time of reward (Figure 8, bottom panel)? If distal responses have weaker excitatory S-R 

associations, while proximal responses have stronger excitatory S-R associations, thereby exerting stronger 

mutual inhibiton against other responses, then this observation appears to emerge naturally from the 

Modified Law of Effect as well. That is, responses made closer to the time of reward will gain greater 

excitatory S-R strength, and thereby greater mutual inhibition, compared to more distal responses. 

The original discovery of the relationship between reward versus nonreward and response 

variation was observed in the study of extinction of operant responding (Antonitis, 1951; Eckerman & 

Lanson, 1969; Frick & Miller, 1951; Herrick & Bromberger, 1965; Millenson & Hurwitz, 1961; 

Notterman, 1959; & Stebbins & Lanson, 1962). Thus, a critical test involves how the additional postulates 

of the Modified Law of Effect may allow for an account of this well-documented phenomenon. Figure 14 

provides the simulated data for each of the four models tested. What is intriguing is that only the Modified 

Law of Effect that incorporates both input inhibition and mutual inhibition correctly models an increase in 

response variation during extinction. The original law and the one that includes input inhibition fail to 

predict any increase in response variation from zero during extinction. The modified model incorporating 

only mutual inhibition does predict an increase in response variation during extinction, but only for 

responses that have not reached a zero asymptote during acquisition. Thus, we can conclude that both 

postulates are necessary to model this robust empirical phenomenon.  

How does the Modified Law of Effect account for the increase in variability during extinction of a 

previously reinforced response? Nonreward increases the inhibitory S-R association (input inhibition) for 

the previously reinforced R. When R is inhibited by the stimulus via this inhibitory S-R connection, all 

other responses are released from R’s mutual inhibition. By releasing mutual inhibition to all other 

responses, their prior excitatory S-R associations can resurge (cf. Winterbauer & Bouton, 2010). With 

complete removal of the mutual inhibition (once extinction is compete), resurgence is complete and the 

previously inhibited responses return to their original prior probability. Thus, the Modified Law of Effect 

explains the increase in response variation during extinction as resurgence of prior responses originally 

observed prior to reinforcement in acquisition. 

It cannot be overstated that the success of the Modified Law of Effect incorporating both types of 

inhibition to correctly model an increase in response variation during extinction is a major breakthrough. 

Previously, both the increase in variation in extinction and to stimuli with a history of lower probability of 

reinforcement has been taken as strong evidence for a cognitive expectancy on the part of the subject. 

That is, such relationships had been thought to be beyond the Law of Effect to explain. Our modifications 

to the law incorporating a well-known basic process of inhibition overcome this hurdle. 



Conductual, Revista Internacional de Interconductismo y Análisis de Conducta  Law of Effect or Expect? 

 
 

 
  79 

 

Ref.: Conductual, 2016, 4, 2, 61-90 ISSN: 2340-0242  

Variability as an operant 

Given the success of the Modified Law of Effect, we were interested in what other aspects of 

response variation could be successfully modeled within an S-R framework. There has been a great deal of 

research on behavioral variability as an operant (see review by Neuringer, 2002). The question Neuringer 

and colleagues have studied is whether response variability can be the target of selection by reinforcement, 

that is, whether it can be an operant. A standard procedure to show this is to compare response variability 

in different groups of subjects, where variability is explicitly reinforced for one group but not for others. 

One way to reinforce response variation is to reinforce actions that the subject has not made recently, 

such as in the past 50 trials. Response variability in this VAR group is typically compared to a group that is 

reinforced for any response (Group ANY). But the rate of reinforcement will be much higher for Group 

ANY than for Group VAR. To control for this, each subject in a third group (YOKE) is reinforced for 

any response, but only when a partner in the VAR group to which it is yoked is reinforced. Neuringer and 

colleagues have found using this procedure that response variability is significantly higher in the VAR 

group compared to the ANY and YOKE groups, thereby suggesting that variability is a reinforceable 

dimension of behavior. 

Neuringer et al. (2001) report an additional finding that, following operant reinforcement, 

response variability increases even more during extinction than the amount observed during 

reinforcement (see Figure 4 of Neuringer et al., 2001). Thus, we were interested in how the various 

versions of the Law of Effect would handle both operant variability and the increase in variability in 

extinction, even in Group VAR. Figure 16 shows the simulation results for the four models. All four 

models, even the original Law of Effect, can account for operant variability. This is not surprising because 

even the original model predicts that repeated responses that are nonreinforced will weaken their S-R 

strength. Given that repeated responses are not explicitly nonreinforced for Group YOKE, but are for 

Group VAR, the greater response variation in Group VAR is perfectly expected.  

 

Figure 16. Simulations of the original Law of Effect (LoE, upper left), as well as the Modified Law of Effect 
(MLoE) with only inhibitory S-R links (LoE+InInh, lower left), only mutual inhbition (LoE+mInh, upper right), or 
both (LoE+InInh+mInh, lower right). Simulations show changes in response variability during acquisition on a 
partial schedule of reinforcement on a VAR or YOKE schedule (right panel), and extinction (left panel). 
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The original law and the modified law that only includes input inhibition fail to show a significant 

drop in response variation during acquisition. Empirically, however, variability does decrease somewhat as 

the time of reinforcement approaches (Stahlman et al., 2010b) even for operant variability (Cherot, Jones, 

& Neuringer, 1996). Thus, the two models in the left panel of Figure 16 fail to accurately capture the 

empirical phenomenon of operant variability. The modified laws that incorporate mutual inhibition, 

however, do capture the drop in response variability during reinforcement learning, while also accurately 

capturing the maintenance of greater variation when it is reinforced (though the Modified Law including 

only mutual inhibition predicts greater variability in the YOKE group early in training which is not 

observed empirically). What is interesting is that none of the models except for the fully Modified Law of 

Effect, predict an increase in response variation during extinction. Thus, only the modified law accurately 

models the increase in response variation observed in extinction following both conventional partial 

reinforcement of a target response and reinforcement of operant variability. 

How does the Modified Law of Effect account for the drop in variability during acquisition followed 

by the increase in variability during extinction in Group VAR? Operant variability by definition involves 

the delivery of reinforcement contingent upon the emission of relatively unusual responses (Blough, 1966; 

Neuringer, 2004; Pryor, Haag, & O'Reilly, 1969). The reinforcer strengthens the excitation to those S-R 

associations it follows, which increases their likelihood relative to other responses. Furthermore, each 

increase in an S-R association following reinforcement increases the mutual inhibition directed to all other 

responses, thereby reducing their likelihood. During extinction, these same originally strengthened S-R 

associations receive increased S-R (input) inhibition, reducing the mutual inhibition these responses direct 

towards all other responses. This results in resurgence in the other previously inhibited responses. Said 

another way, by reinforcing responses, even using the criterion that responses must vary, variation will 

necessarily go down relative to prior amounts that preceded the introduction of reinforcement. Extinction 

brings the level of response variability back to the prior state that existed before the reinforcement 

protocol began. 

Contrast effects 

A classic demonstration of expectation representation in learning comes from demonstrations of 

anticipatory contrast effects (e.g., Crespi, 1942; Elliott, 1929). While larger or higher-quality rewards tend 

to support stronger or faster instrumental responding compared to smaller or lower-quality rewards, a 

change from a small to a large reward can cause an increase in response strength beyond that shown in a 

control group where large reward is consistently employed. This is called positive anticipatory contrast. 

Likewise, a change from a large to a small reward (or from a more preferred to a less preferred reward) 

can produce a decrease in response strength below that shown in a control group where the smaller or 

lower-quality reward is consistently employed. This is called negative anticipatory contrast. Positive and 

negative anticipatory contrast effects have been argued to show evidence that the subject encodes the 

value (quantitative or qualitative) of the reward, which leads the subject to have an expectation of the 

reward with a learned value (Flaherty & Grigson, 1988). Shifting the value of the reward larger or smaller 

than the expected amount changes performance of the instrumental response so that it overshoots (above 

in the case of upshifts; below in the case of downshifts) the level of instrumental performance displayed 

by subjects for which the reward was not changed. Interestingly, anticipatory contrast effects have only 

been found in various species of mammals, but not in non-mammalian vertebrate species, such as 

pigeons, turtles, toads, or goldfish (Papini, 2008; but see Mackintosh et al., 1972; & Reynolds, 1961). 

These comparative data suggest that outcome expectation is only found in mammals, at least so far as it 

can be measured by its influence on responding when outcome value changes. Recently it was shown in a 

button pressing task that an unanticipated decrease in reward magnitude (and extinction) induced 
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behavioral variation in human subjects, while upshifts had no effect on variation (possibly due to a 

performance floor effect; Jensen et al., 2014). 

We simulated positive and negative anticipatory contrast in our four models of the Law of Effect 

(Figure 17). The original Law of Effect nicely captures the difference in response variation observed for 

small versus large rewards, with more variation shown for a smaller reward. Interestingly, adding input 

inhibition to the original model abolishes this success, which suggests that this addition alone is untenable 

(as also shown in Figure 15). Nevertheless, despite accurately capturing the difference in variation induced 

by differences in reward size, the original law does not capture either negative or positive anticipatory 

contrast effects when rewards are shifted, as have been found in mammals. It turns out that adding mutual 

inhibition alone or in combination with input inhibition also fails to capture the anticipatory contrast 

effects observed in mammals. Thus, the data from mammals, at least, appears to necessitate the inclusion 

of outcome expectancy as part of what is learned during instrumental conditioning. The Modified Law of 

Effect, however, can account for the lack of contrast observed in non-mammalian vertebrates. The original 

Law of Effect can, too, however. 

 

Figure 17. Simulations of the original Law of Effect (LoE, upper left), as well as the Modified Law of Effect 
(MLoE) with only inhibitory S-R links (LoE+InInh, lower left), only mutual inhbition (LoE+mInh, upper right), or 
both (LoE+InInh+mInh, lower right). Simulations show changes in response variability during acquisition on a CRF 
schedule of reinforcement with a large or small reward (right panel), and during the contrast phase when reward 
magnitudes were switched between conditions (left panel). 
 

Discussion of the Modified Law of Effect 

We found that a Modified Law of Effect that includes a process of mutual inhibition between all 

potential responses that can occur in a situation, and that replaces the weakening of S-R connections from 

nonreward with increasing inhibitory S-R connection (Figure 13), successfully modeled many empirical 

phenomena involving behavioral variation that the original Law of Effect cannot accommodate. This 

includes the inverse relationship between probability of reward and response variation, effect of 

reinforcement of variation on maintenance of some degree of response variation, and an increase in 

response variation induced by extinction, even compared to the amount of variation conditioned through 

reinforcement.  
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These modifications to the law make sense in light of both an historical and contemporary 

understanding of behavior during extinction. While Thorndike (1913) treated nonreward as weakening of 

the S-R association, Pavlov (1927) originally thought of extinction learning as an inhibitory process rather 

than the erasure of associative strength. Contemporary research also supports the inhibition interpretation 

of extinction learning (e.g., Bouton, 2002; Rescorla, 1993). Rescorla in particular provided empirical 

support for the acquisition of an inhibitory S-R association during extinction learning. When a previously 

instrumental response is followed by nonreward, original learning appears not to be erased. Rather, the 

original learning is suppressed through the action of an inhibitory S-R association acquired during 

extinction. Evidence that may support this interpretation comes from phenomena by which the original 

response returns, such as with the passage of time (spontaneous recovery), with the presentation of a 

feature of the original learning situation (reinstatement), and when testing occurs in a context different 

from extinction (renewal). Likewise, according to the Modified Law of Effect, responses that are followed by 

nonreward result in strengthening of an inhibitory S-R association rather than a weakening (erasure) of an 

excitatory S-R association. Thus, this postulate of the Modified Law of Effect has strong empirical support. 

The inclusion of mutual inhibition was also found to be critical to some of the successes of the 

Modified Law of Effect. In fact, without mutual inhibition, adding just S-R (input) inhibition degraded the 

explanatory power of the original Law of Effect. Mutual inhibition has received less attention as a 

mechanism of behavior in associative learning. Nevertheless, it has strong empirical support as a 

fundamental mechanism of neural circuits (Tunstall et al., 2002) and in mechanisms that ‘tune’ specificity 

in sensory and perceptual processes. Thus, mutual inhibition likely is an important, though overlooked, 

mechanism of behavior that operates in many learning situations. In our model, nonreward increased 

inhibitory S-R strength, thereby removing other responses from mutual inhibition. Many of the modified 

model’s successes derive from this process. 

What are the limitations of the Modified Law of Effect? Despite its many successes, the Modified Law 

of Effect was unable to account for anticipatory contrast effects as found in mammals. Such contrast effects 

are best accounted for in terms of outcome expectancy learning. Thus, the Law of Expect might still have 

more explanatory power than even the Modified Law of Effect, at least for anticipatory contrast effects. 

The Law of Expect may be a preferred account for other reasons as well (cf. Bolles, 1972). Because 

it involves outcome expectancy, it shares many features with goal-directed action—for which there is 

compelling evidence, while the Modified Law of Effect provides an account in terms of habitual control of 

behavior (as does the original Law of Effect). A test of goal-directed action involves the use of contingency 

degradation and outcome devaluation procedures (Balleine & Dickinson, 1998; Colwill & Rescorla, 1985, 

1986). If either degrading the contingency between the response and the outcome, or devaluing the 

outcome (temporarily through satiation, or more permanently through conditioned taste aversion) result 

in a decrease in the instrumental response, we can say that the response is goal directed and that the 

outcome is part of the association motivating behavior. Likewise, these same two procedures could be 

usefully applied to dissociate the Modified Law of Effect from the Law of Expect. If contingency degradation 

and outcome devaluation reduce the response rate and increase response variation in the absence of 

further training, then we would have direct evidence for outcome expectancy—a result that would favor 

the Law of Expect over the Modified Law of Effect.  

Likewise, the Law of Expect and Modified Law of Effect make different predictions regarding 

response variability in a Pavlovian to Instrumental Transfer (PIT) design. The subject would first be 

trained on two stimuli, one as a High probability and the other as a Low probability Pavlovian cue, but 

without letting the subject sign-track. This would be followed by a nonreinforced probe test where the 

subject is given access to the cues so that sign tracking behavior could emerge. According to the Law of 
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Expect, sign-tracking responses should be more variable to the low probability than to the high probability 

cue. This prediction is derived from the postulate that the expectation of the outcome regulates response 

variability. The Modified Law of Effect, however, fails to make this prediction because it relies on S-R 

learning (both excitatory and inhibitory) to occur before differences in response variability emerge. For 

now, we must await such experiments to be conducted. 

If there is strong empirical support for the necessity of a Law of Expect, what are its limitations? 

That is, is there still a need for a Law of Effect (Dennett, 1975)? Despite its many successes, the Law of 

Expect fails to account for learned behavior that is insensitive to the effects of outcome devaluation or 

contingency degradation manipulations. Such behavior is argued to be under habitual control rather than 

goal-directed (Balleine & Dickinson, 1998; Colwill & Rescorla, 1985, 1986). Habitual control of behavior 

is best accounted for in terms of S-R learning without (effective) representations of the outcome either 

through S-O or R-O associations. Thus, it appears a Law of Effect (S-R associations) is still needed to 

provide a full account of learned behavior. 

The Law of Expect and creativity 

Reward expectation may also modulate creative behavior (Stahlman et al., 2013). Empirical 

evidence for the negative effect of reinforcement on behavioral variability with respect to creativity comes 

from studies showing that variability tends to decrease as an animal draws nearer to reward (Gharib et al., 

2001; Neuringer, 1991; Schwartz, 1982; Stahlman et al., 2010b). The observation that variability tends to 

decrease with approach to reinforcers certainly suggests that reinforcement interferes with production of 

novel behavior (Cherot et al., 1996). Reinforcement of variability tends to increase total levels of variability 

(e.g., Page & Neuringer, 1985), but as outcomes become more proximal on a given trial, variability 

decreases. Each of these opposing effects of reinforced variability (i.e., the Law of Effect and the Law of 

Expect) may have implications for optimal methodology for training creativity (see also Epstein, 1990). 

Reward Circuitry 

Since 2000, there has been a large amount of research devoted to investigating the role of the 

basal ganglia in instrumental behavior. Normal functioning of the components of the basal ganglia appears 

to be critical for instrumental learning procedures. The nucleus accumbens (e.g., Hernandez, Sadeghian, & 

Kelley, 2002; Koch, Schmid, & Schnitzler, 2000; Salamone, Correa, Farrar, & Mingote, 2007; Wyvell & 

Berridge, 2000) and the striatum (e.g., Wiltgen, Law, Ostlund, Mayford, & Balleine, 2007; Yin & 

Knowlton, 2006; Yin, Knowlton, & Balleine, 2006) seem to be important for the acquisition and 

performance of instrumental actions. 

The basal ganglia are thought to be of primary importance in both expectation and in regulating 

behavioral variability particularly in associative preparations. In rhesus macaques, information regarding 

the size of an expected reward is encoded by neurons in the anterior striatum (Cromwell & Schultz, 2003); 

other studies have demonstrated that motor behavior in monkeys is shaped by incentive value encoded in 

the basal ganglia circuit (Pasquereau et al., 2007), and that neural activity in the caudate nucleus accurately 

predicts both rewarded and unrewarded action (Watanabe, Lauwereyns, & Hikosaka, 2003). There is 

evidence to support the role for prefrontal cortical structures in modulating the behavior in the striatum 

during reward encoding (Staudinger, Erk, & Walter, 2011). Graybiel (2005), among others, has suggested 

that reinforcement signals (e.g., magnitude and likelihood of reward) are instantiated in the basal ganglia. 

In addition, she suggests that the basal ganglia are critically important in maintaining the balance of 

exploration and exploitation in conditioned animal behavior, thereby optimizing response output to the 

expected conditions of reward. It is important to note the confluence of this suggestion with Gharib et 
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al.’s (2004) argument that variability in behavior must be appropriately modulated as the costs and benefits 

of variation change. 

Bird song learning 

Neurobiological evidence from songbirds indicates that the functionality of the basal ganglia with 

respect to production of variation is conserved across even phylogenetically distant relatives. Brainard and 

Doupe (2000) discovered that lesions of the lateral magnocellular nucleus of the anterior nidopallium 

(LMAN, an avian cortical-basal ganglia circuit) result in unusual stereotypy in song in male zebra finches. 

Other studies (Brainard & Doupe, 2001; Kao & Brainard, 2006; Kao, Doupe, & Brainard, 2005) have 

corroborated the existence of a positive correlation between variation in song and activity of the LMAN 

in male zebra finches. As a zebra finch male ages, the activity of the LMAN, the variation in its song 

output, and its ability to modulate its song all decrease (Kao & Brainard, 2006). These findings support the 

hypothesis that the basal ganglia are critical for the production and modulation of song variation. For 

example, it allows the male finch to rapidly learn to shift the pitch of its song to avoid a disruptive 

exogenous stimulus (Tumer & Brainard, 2007). Dopaminergic connections within the circuitry of the basal 

ganglia are critically important for the modulation of song variability in adult songbirds (Leblois, Wendel, 

& Perkel, 2010). The adaptability of the control of variability in behavior is not confined to songbirds. 

Research with mice (Tanimura, Yang, & Lewis, 2008), voles (Garner & Mason, 2002), bears (Vickery & 

Mason, 2005), and humans (e.g., Neuringer, 2002) corroborates the relationship between variability 

production and the generation of adaptive action. 

Conclusions 

We have presented empirical evidence for a very general and widespread role of outcome 

expectation in controlling response variation. This has led us to propose a new Law of Expect. We also 

developed and tested a Modified Law of Effect that incorporates two processes of inhibition, an inhibitory S-

R connection acquired directly to the R when followed by no reward, and mutual inhibition between all 

possible responses in a particular S. While this Modified Law dramatically extended the explanatory 

capabilities of the original Law, it nevertheless cannot account for all of the empirical data. The Law of 

Expect, on the other hand, cannot account for the development of habitual control of behavior by which 

the learned response becomes insensitive to contingency degradation and outcome devaluation. Thus, the 

Modified Law of Effect and Law of Expect together play a fundamental counterbalancing role in learning. The 

Law of Expect codifies the way that S-O associations acquired by the individual while interacting with its 

environment drive response variation. Stronger S-O associations produce less variation than weaker ones. 

The resulting variation in response is thereby modulated by prevailing circumstances, placing the 

individual at an advantageous balancing point along the continuum from exploration to exploitation. 

Given the fundamental and critical role it plays in behavior during learning, we believe greater attention 

should be paid to the scientific investigation of the psychological and neural mechanisms that underlie the 

Laws of Effect and Expect.  
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